
Definitions and some examples

JSP
Java Server Pages

By Hamid Mosavi-Porasl

 2

1 JSP compared to servlet .. 3
2 Steps required for a JSP request.. 3
3 Simple JSP Page ... 3
4 There are five main tags in JSP... 4

4.1 Declaration tag (<%! %>).. 4
4.2 Expression tag (<%= %>)... 4
4.3 Directive tag (<%@ directive … %>) .. 4

4.3.1 Page directive:... 4
4.3.2 Include directive.. 5
4.3.3 Tag Lib directive... 6

4.4 Scriptlet tag (<% ….%>) .. 6
4.5 Action tag.. 6

5 Java Beans... 6
6 Dynamic JSP Include.. 7

6.1 An example: .. 7
7 Action and Implicit Objects .. 7

7.1 Servlet-related objects... 8
7.1.1 Page object .. 9
7.1.2 Config object... 9
7.1.3 Input/output... 10
7.1.4 Contextual objects... 14

8 Session Tracking in JSP (Session Object) .. 19
8.1 An example about JSP session:... 20

9 Flow of control.. 21
9.1 Conditionalization... 21
9.2 Iteration ... 21
9.3 Exception handling ... 22
9.4 Comments ... 23

9.4.1 Content comments .. 23
9.4.2 JSP comments ... 23
9.4.3 Scripting language comments ... 24
9.4.4 Example for Comments in JSP ... 24

10 Actions .. 25
10.1 Forward ... 25

10.1.1 Example - Jsp:forward .. 26
10.2 Include... 26
10.3 Plug-in... 28
10.4 Bean tags... 28

 3

Java Server Pages (JSP) is a technology based on the Java language and enables the
development to dynamic web sites. JSP was developed by Sun Microsystems to allow
server side development. JSP files are HTML files with special tags containing Java
source code that provide the dynamic content.

1 JSP compared to servlet
A Servlet is a Java class that provides special server side services. It is hard work to write
HTML code in Servlets. In Servlets you need to have lots of println statements to
generate HTML.

2 Steps required for a JSP request

1. The user goes to a web site made using JSP. The web browser makes the request
via Internet.

2. The JSP request gets sent to the web Server

3. The Web server recognizes that the file required is special (.jsp), therefore passes

the JSP file to the JSP Servlet Engine.

4. If the JSP file has been called the first time, the JSP file is parsed, otherwise go to
step 7.

5. The next step is to generate a special Servlet from the JSP file. All the HTML

required is converted to println statements.

6. The Servlet source code is compiled into a class.

7. The Servlet is instantiated, calling the Init and service methods.

8. HTML from the Servlet output is sent via the Internet

9. HTML results are displayed on the user’s web browser.

3 Simple JSP Page
<html>
<head>
<title>A simple JSP page</title>
</head>
<body>
<%@ page language=”java” %>
<% System.out.println(“A simple JSP page”); %>
</body>
</html>

 4

Type the code above into a text file. Name that to simpleJspPage.jsp. Paste that to correct
directory.

4 There are five main tags in JSP
1. Declaration tag
2. Expression tag
3. Directive tag
4. Scriptlet tag
5. Action tag

4.1 Declaration tag (<%! %>)
This tag allows the developer to declare variables or methods.
For example:
<%!
 private int counter=0;
 private String get Account(int accountNo);
%>

4.2 Expression tag (<%= %>)

This tag allows the developer to embed any Java expression and is short for out.println()
A semicolon (;) doesn’t appear at the end of the code inside the tag.
For example:
Date: <%= new java.util.Date() %>

4.3 Directive tag (<%@ directive … %>)
A JSP directive tag gives special information about the page to the JSP engine.
There are three main types of directives:

1) Page – processing information for this page
2) Include – files to be included
3) Tag library – tag library to be used in this page

Directives don’t produce any visible output when the page is requested but change the
way the JSP engine processes the page.

4.3.1 Page directive:
This directive has 11 optional attributes that provides the JSP Engine with special
processing information:
language Language the file uses <%@page language=”java”%>
Extends Superclass used by the JSP

engine for the translated
Servlet

<%@page
extends=”com.taglib…”%>

import Import all the classes in a
java package into the
current JSP page. This
allows the JSP page to use
other java classes.

<%@page import=”java.util”%>

 5

Following packages are
implicitly imported.
java.lang.*;
javax.servlet.*;
javax.servlet.*;
javax.servlet.jsp.*;
javax.servlet.http.*;

Session Does the page make use of
sessions. By default all JSP
pages have session data
available. There are
performance benefits to
switching session to false.

Default is set to true

Buffer Controls the use of
buffered output for a JSP
page. Default is 8 kb

<%@page buffer=”none”%>

autoFlush Flush output buffer when
full

<%@page autoFlush=”true”%>

IsThreadSafe Can the generated Servlet
deal with multiple
requests? If true a new
thread is started so requests
are handled simultaneously

Info Developer uses info
attribute to add
information/document for a
page. Typically used to add
author, version, copyright
and date info

<%@page
info=”visualbuilder.com test
page, copyright 2001.”%>

ErrorPage Different page to deal with
errors. Must be URL to
error page.

<%@page
errorPage=”/error/error.jsp”%>

IsErrorPage This flag is set to true to
make a JSP page a special
Error page. This page has
access to the implicit
object exception

ContentType Set the mime type and
character set of the JSP

Table 1 - 11 optional attributes for JSP directive

4.3.2 Include directive
Allows a JSP developer to include contents of a file inside another. Typically include
files are used for navigation, tables, headers and footers that are common to multiple
pages.

 6

Two examples of using include files:

This includes the html from privacy.html found in the include directory into the
current JSP page.

<%@ include file=”include/privacy.html %>
or to include a navigation menu (JSP file) found in the current directory.
<%@ include file=”navigation.jsp%>

4.3.3 Tag Lib directive
A tag lib as a collection of custom tags that can be used by the page.
<%@ taglib uri=”tag library URI” prefix=”tag Prefix” %>
Custom tags were introduced in JSP1.1 and allow JSP developers to hide complex
server side code from web designers.

4.4 Scriptlet tag (<% ….%>)
Between <% and %> tags, any valid java code is called a Scriptlet. This code can
access any variable or bean declared.
<%
 String username=”visualbuilder”;
 Out.println(username);
%>

4.5 Action tag
There are three main roles of action tags:

1) enable the use of server side Java beans
2) transfer control between pages
3) browser independent support for applets

5 Java Beans
A java bean is a special type of class that has a number of methods. The JSP page can
call these methods so can leave most of the code in these java beans. For example, if
you wanted to make a feedback from the automatically sent out an email. By having a
JSP page with a form, when the visitor presses the submit button this sends the details
to a java bean that sends out the email. This way there would be no code in the JSP
page dealing with sending emails (Java Mail API) and your Java bean could be used
in another page.

To use a java bean in a JSP page we use the following syntax:
<jsp: usebean id=”…” scope=”application” class=”com…”/>

The following is a list of Java bean scopes:

page – valid until page completes

 7

request – bean instance lasts for the client request
session – bean lasts for the client session
application – been instance created and lasts until application ends.

6 Dynamic JSP Include

We have seen how a file can be included into a JSP using an include Directive:
<%@ include file=”include/privacy.html%>
This is useful for including common pages that are shared and is included at compile
time. To include a page at run time we should use dynamic JSP includes.
<jsp:include page=”URL” flush=”true”/>

6.1 An example:
In following example above mentioned JSP tags are used:

<html>
<head>
<title> JSP TAGS</title>
</head>
<body> JSP TAGS example

<%!
 String sitename=”www.porasl.com”;
 int counter=0;

 private void Counter()
{
 counter++;
}
%>

website of the day is
<%=sitename%>

Page accessed <%=counter%>
</body>
</html>

7 Action and Implicit Objects

Application specific classes can be initiated and values from method calls can be inserted
into JSP output. Network resources and repositories such as databases can be accessed to
store and retrieve data for use by JSP pages. In addition to objects such as these, which
are completely under the control of the developer, the JSP container also exposes a
number of its internal objects to the page author. These are referred to implicit objects,
because their availability in a JSP page is automatic. The developer can assume that

 8

these objects are present and accessible via JSP scripting elements. Each implicit object
must adhere to a corresponding API, in the form of a specific Java class or interface
definition. Thus it will either be an instance of the class or interface, or of an
implementation-specific subclass.

Object Class or interface Description
page javax.servlet.jsp.HttpJspPage Page’s servlet instance
config javax.servlet.ServletConfig Servlet configuration data
request javax.servlet.http.HttpServletRequest Request data, including

parameters
response javax.servlet.http.HttpServletResponse Response data
out javax.servlet.jsp.JspWriter Output stream for page

content
session javax.servlet.http.HttpSession User-specific session data
application javax.servlet.ServerContetext Data shared by all

application pages
pagecontent javax.servlet.jsp.PageContext Context data for page

execution
exception java.lang.throwable Uncaught error exception

Table 2 Nine implicit objects provided by JSP

Beyond this functional categorization, four of the JSP implicit objects – request, session
application and pageContext – have something else in common: the ability to store and
retrieve arbitrary attribute values. By setting and getting attribute values, these objects are
able to transfer information between and among JSP pages and servlets as a simple data-
sharing mechanism.

The standard methods for attribute management provided by the classes and interfaces of
these four objects are summarized in following table. Note that attribute keys take the
form of Java String objects, while their values are referenced as instances of
java.lang.Object.

Method Description
setAttribute(key,value) Associates an attribute value with a key (i.e , a

name).
getAttributeNames() Retrievers the names of all attributes associated

with the session
getAttribute(key) Retrieves the attribute value associated with the key
removeAttribute(key) Removes the attribute value associated with the key

Table 3 Common methods for storing and retrieving attribute values

7.1 Servlet-related objects

The two JSP implicit objects in this category are based on the JSP page’s implementation
as aservlet. The page implicit object represents the servlet itself while the config object
stores the servlet’s initialization parameters.

 9

7.1.1 Page object
The page object represents the JSP page itself or more specifically, an instance of the
servlet class into which the page has been translated. It may be used to call any of the
methods defined by that servlet class.

Here is an example page fragment that utilizes this implicit object:

<%@ page info=”page implicit demonstration.”%>
page info:
<%=((javax.servlet.jsp.HttpJspPage) page).getServletInfo()%>

This expression will insert the value of the page’s documentation string into the output
from the page. In this example, note that because the servlet class varies from one page to
another, the standard type for the page implicit object is the default Java type for
nonprimitive values, java.lang.object. In order to access methods defined by the
javax.servlet.jsp.HttpJspPage interface, the page object must first be cast to that interface.

After running following HTML code:
<html><head>
</head>
<body>
<%@ page info="page implicit demonstration."%>
page info:
<%=((javax.servlet.jsp.HttpJspPage) page).getServletInfo()%>
</body>
</html>
We get following output after running (page.jsp):
page info: page implicit demonstration.

7.1.2 Config object
The config object stores servlet configuration data – in the form of initialization
parameters – for the servlet into which a JSP page is compiled. Because JSP pages are
seldom written to interact with initialization parameters, this implicit object is rarely used
in practice. This object is an instance of the javax.servlet.ServletConfig interface.

Method Description
getInitParameterNames() Retrieves the names of all initialization parameters
getInitParameter(name) Retrieves the value of the named initialization

parameter

Table 4 Methods of javax.servlet.ServletConfig Interface for accessing Initialization parameters

Due to its role in servlet initialization, the config object tends to be most relevant in a
page’s initialization routine. Consider the following variation on the sample jspInt()
method:

<%! Static private DbConnectionPool pool=null;

 10

 public void jspInit(){
 if (pool == null){
 String username = config.getInitParameter(“username”);
 String password = config.getInitParameter(“password”);
 }
} %>

In this case rather than storing the username and password values directory in the JSP
page, they have been provided as initialization parameters and are accessed via the config
object.

Values for initialization parameters are specified via the deployment descriptor file of a
web application.

7.1.3 Input/output
These implicit objects are focused on the input and output of a JSP page. More
specifically, the request object represents the data coming into the page while the
response object represents its result. The out implicit object represents the actual output
stream associated with the response, to which the page’s content is written.

7.1.3.1 Request object
The request object represents the request that request that triggered the processing of the
current page. For HTTP requests, this object provides access to all of the information
associated with a request including its source the requested URL and any headers,
cookies, or parameters associated with the request. The request object is required to
implement the javax.servlet.ServletRequest interface. When the protocol is HTTP, as is
typically the case, it must implement a subclass of this interface,
javax.servlet.http.HttpServletRequest.

The request object is one of the four JSP implicit objects the support attributes, by means
of the methods presented in Table 4. The HttpServletRequest interface also includes
methods for retrieving request parameters and HTTP headers.

Among the most common uses for the request object are looking up parameter values and
cookies. Here is a page fragment illustrating the use of the request object to access a
parameter value:

<% String xStr=request.getParameter(“number”);%>
try{ long x =Long.parseLong(xStr); %>
Factorial result: <% =x %>! =<%=fact(x)%>
<% } catch(NumberFormatException e){ %>
Sorry, the number parameter does not specify an integer value.
<% } %>

 11

In this example the value of the number is fetched from the request. Note that all
parameter values are stored as strings so conversion is required before it may be used as a
number. If the conversion succeeds, this value is used to demonstrate the factorial
function. If not, an error message is displayed.

When utilizing the <jsp:forward> and <jsp:include> action described at the end of this
chapter, the request object is also often used for storing and retrieving attributes in order
to transfer data between pages.

Method Description
getParameterNames() Returns the names of all request parameters
getParameter(name) Returns the first (or primary) value of a single

request parameter
getParaneterValues(name) Retrieves all of the values for a single request

parameter

Table 5 - Methods of the javax.servlet.http.HttpServletRequest interface for accessing request

Method Description

getHeaderNames() Retrieves the names of all of headers associated
with the request

getHeader(name) Returns the value of a single request header, as a
string

getHeaders(name) Returns all of the values for a single request header
getIntHeader(name) Returns the value of a single request header, as an

integer
getDateHeader(name) Returns the value of a single request header, as a

date
getCookies() Retrieves all of the cookies associated with the

request

Table 6 - Methods of the javax.servlet.http.HttpServletRequest interface for retrieving request headers

Method Description

getMethod() Returns the HTTP (e.g., GET, POST) method for
the request.

getRequestURL() Returns the request URL up to but not including any
query string

getQueryString() Returns the query string that follows the request URL, if
any

getSession(flag) Retrieves the session data for the request (i.e., the session
implicit object) optionally creating it if it doesn’t already
exist

getRequestDispatcher(path) Creates a request dispatcher for the indicated local URL

getRemoteHost() Returns the fully qualified name of the host that sent the
request

getRemoteAddr() Returns the network address of the host that sent the
request

getRemoteUser() Return the name of user that sent the request, if known.

getSession(flag) Retrieves the session data for the request (i.e., the session
implicit object), optionally creating it if it doesn’t already
exist.

 12

Table 7 – Miscellaneous methods of the javax.servlet.http.HttpServletRequest interface

7.1.3.2 Response object

The response object represents the response that will be sent back to the user as a result
of processing the JSP page. This object implements the javax.servlet.ServletResponse
interface. If it represents an HTTP response, it will furthermore implement a subclass of
this interface, the javax.servlet.http.HttpServletResponse interface.

Method Description
getContentType() Set the MIME type and, optionally, the character

encoding of the response’s contents.
getCharacterEncoding() Returns the character encoding style set for the

response’s contents

Table 8 – Methods of the javax.servlet.http.HttpServletResponse interface for specifying content

Method Description

addCookie(cookie) Adds the specified cookie to the response
containsHeader(name) Checks whether the response includes the named header
setHeader(name, value) Assigns the specified string value to the named header
setIntHeader(name, value) Assigns the specified integer value to the named header
setDateHeader(name value) Assigns the specified date value to the named header
addHeader(name value) Adds the specified string value as a value for the named

header
addIntHeader(name, value) Adds the specified integer value as a value for the named

header.
addDateHeader(name, date) Adds the specified date value as a value for the named

header.

Table 9 Methods of the javax.servlet.http.HttpServletResponse Interface for setting response headers

Method Description

SetStatus(code) Sets the status code for the response (for non-error
circumstances).

SetError(status,msg) Sets the status code and error message for the
response.

SendRedirect(url) Sends a response to the browser indicating it should
request an alternate (absplute) URL.

Table 10 – Response code methods of the javax.servlet.http.HttpServletResponse Interface

Method Description
EncodeRedirectURL(url) Encodes a URL for use with the sendRedirect()

method to include session information.
EncodeURL(name) Encodes a URL used in a link to include session

information.

Table 11– Methods of the javax.servlet.http.HttpServletResponse interface for performing
URL rewriting

 13

Below is a scriplet that uses the response object to set various headers for preventing the
page from being cached by a browser:

<% response.setDateHeader(“Expires”,0);
 response.setHeader(“Pragma” “no-cache”);
 if(request.getProtocol().equals(“HTTP/1.1”)){
 response.setHeader(“Cache-Control”, “no-cache”);
 }
%>

The scriptlet first sets the Expires header to a date in the past. This indicates to the
recipient that the page’s contents have already expired, as a hint that its contents should
not be cached.

7.1.3.3 Out object
This implicit object represents the output stream for the page, the contents of which will
be sent to the browseras the body of its response. The out object is an instance of the
javax.servlet.jsp.JspWriter class. This is an abstract class that extends the standard
java.io.Writer class. This an abstract class that extends the standard java.io.writer class.
In particular, it inherits all of the standard write() methods provided by java.io.Writer,
and also implements all of the print() and println() methods defined by
java.io.PrintWriter.

For example the out object can be used within a scriptlet to add content to the generated
page as in the following page fragment:

<p> Counting eggs
<% int count=0;
 while (carton.hasNext()){
 count++;
 out.print(“.”);
}
%><p>
There are <%=count%> eggs.</p>

The javax.servlet.jspWriter class defines a number of methods that supports JSP specific

behavior. These additional methods are summarized in following table:

Method Description
isAutoFlush() Returns true if the output buffer is automatically

flushed when it becomes full, false if an exception is
thrown.

getBufferSize() Returns the size (in bytes) of the output buffer
getRemaining() Returns the size (in bytes) of the unused portion of

the output buffer
clearBuffer() Clears the contents of the output buffer, discarding

them.

 14

clear() Clears the contents of the output buffer, signaling an
error if the buffer has previously been flushed.

newLine() Writes a (Platform-specific) line separator to the
output buffer.

flush() Flushes the output buffer, then flushes the output
stream

close() Closes the output stream flushing any comments

Table 12. JSP-oriented methods of the javax.servlet.jsp.JspWriter Interface

Below is a page fragment that uses the out object to display the buffering status:

<% int total=out.getBufferSize();
 int available = out.getRemaining();
 int used = total – available; %>
Buffering status:
<%=used%>/<%=total%> =<%= (100.0 * used)/TOTAL %>

The methods provided for clearing the buffer are also particularly useful. Consider
following approach:

<% out.flush();
 try{ %>
<P align=center><%=x%>!=<%=fact(x)%></p>
<%} catch(IllegalArgumentException e){
 out.clearBuffer(); %>
<p> Sorry, factorial argument is out of range.</p>
<% } %>

In this version, the flush() method is called on the out object to empty the buffer and
make sure all of the content generated so far is displayed. Then the try block is opened
and the call to the fact method, which has the potential of throwing an
IllegalArgumentException, is made.

7.1.4 Contextual objects
The implicit objects in this category provide the JSP page with access to the context
within which it is being processed. The session object for example, provides the context
for the request to which the page is responding. What data has already been associated
with the individual user who is requesting the page? The application object provides the
server-side context within which the page is running.

7.1.4.1 Session object
The JSP implicit object represents an individual user’s current session. All of the requests
made by a user that are part of a single series of interactions with the web server are
considered to be part of a session. As long as new requests by the user continue to be
received by the server, the session persists. If a certain length of time passes without any
requests from one user, the session expires.

 15

The session object then stores information about the session. Application specific data is
typically added to the session by means of attributes. Information about the session itself
is available through the other methods of the javax.servlet.http.HttpSession interface, of
which the session object is an instance.

Method Description
getId() Returns the session ID
getCreationTime() Returns the time at which the session was created
getLastAccessTime() Returns the last time a request associated with thee

session was received
getMaxInactiveInterval() Returns the maximum time (in seconds) between

requests for which thee session will be maintained
setMaxInactiveInterval(t) Sets the maximum time (in seconds) between

requests for which session will be maintained.
isNew() Returns true if user’s browser has not yet confirmed

the session ID
invalidate() Discards the session releasing any objects stored as

attributes

Table 13 – Methods of the javax.servlet.http.HttpSession Interface

One of the primary uses for the session object is the storing and retrieving of attribute
values, in order to transmit user specific information between pages. Below is a scriplet
that stores data in the session in the form of a hypothetical UserLogin object:

<%UserLogin userData = new UserLogin(name, password);
 session.setAttribute(“login”, userData); %>

Once this scriptlet has been used to store the data via the setAttribute() method, another
scripting element – either on the same JSP page or on another page later visited by the
user – could access that same data using the getAttribute() method, as in the following:

<% UserLogin userData = (UserLogin) session.getAttribute(“login”);
 if(userData.isGroupMember(“admin”)){
 session.setMaxInactiveInterval(6-*60*8);
} else{
 session.setMaxInactiveInterval(60*15);
}
%>

Note that when this scriplet retrieves the stored data, it must use the casting operator to
restore its type. This is because the base type for attribute values is java.lang.Object,
which is therefore the return type for the getAttribute() method.

Note that JSP provides a mechanism for objects to be notified when they are added to or
removed from a user’s session. If an object is stored in a session and its class implements
the javax.servlet.http.HttpSessionBindingListener interface, then certain methods
required by that interface will be called whenever session-related events occur.

 16

7.1.4.2 Application object
This implicit object represents the application to which the JSP page belongs. It is an
instance of the javax.servlet.ServletContext interface. JSP pages are grouped into
applications according to their URLs. JSP containers typically treat the first directory
name in a URL as an application. For example http://server/games/index.jsp,
http://server/games/matrixblaster.jsp and http://server/games/space/paranoids.jsp are all
considered part of the same games application. Alternatively complete control over
application grouping can be obtained by use of Web Application Descriptor files.

The key methods of the javax.servlet.ServletContext interface can be grouped into five

major categories:

Methods in Table 14 allow the developer to retrieve version information from the servlet
container.

Method Description
getServerInfo() Returns the name and version of the servlet

container
getMajorVersion() Returns the major version of the Servlet API

for the servlet container
getMinorVersion() Returns the minor version of the Servlet API

for the servlet container

Table 14 Container methods of the javax.servlet.ServletContext interface

Table 15 lists several methods for accessing server-side resources represented as
filenames and URLs.

Method Description
getMimeType(filename) Returns the MIME type for the indicated file, if

known by the server.
getResource(path) Translates a string specifying a URL into an object

that accesses the URL’s contents, either locally or
over the network.

getResourceAsStream(path) Translates a string specifying a URL into an input
stream for reading its contents.

getRealPath(path) Translates a local URL into a path name in the local
file system

getContext(path) Returns the application context for the specified
local URL

getRequestDispatcher(path) Creates a request dispatcher for the indicated local
URL

Table 15 Methods of the javax.servlet.ServletContext interface

for interacting with server-side paths and files

 17

The application object also provides support for logging, via the methods summarized in
Table 16

Method Description
log(message) Writes the message to the log file
log(message,exception) Writes the message to the log file, along with the

stack trace for the specified exception

Table 16 Methods of the javax.servlet.ServletContext interface for message logging

The fourth set of methods supported by this interface are those for getting and setting
attribute values. A final pair of methods provides access to initialization parameters
associated with the application as a whole.

7.1.4.3 PageContext object
The pageContext object provides programmatic access to all other implicit objects. For
the implicit objects that support attributes, the pageContext object also provides methods
for accessing those attributes. In addition, the pageContext object implements methods
for transferring control from the current page to another page, either temporarily to
generate output to be included in the output of the current page, or permanently to
transfer control altogether. The pageContext object is an instance of the
javax.servlet.jsp.PageContext class.

Method Description
getPage() Returns the servlet instance for the current page(i.e.

the page implicit object)
getRequest() Returns the request that initiated the processing of

the page(i.e. the request implicit object)
getResponse() Returns the response for the page(i.e. the response

implicit object)
getOut() Returns the current output stream for the page (i.e.

the out implicit object).
getSession() Returns the session associated with the current page

request
getServletConfig() Returns the servlet configuration object(i.e. the

config implicit object)
getServletContext() Returns the context in which the page’s servlet

runs(i.e. the application implicit object)
getException() For error pages, returns the exception passed to the

page (i.e. the exception

Table 17 Methods of the javax.servlet.jsp.PageContext class for

programmatically retrieving the JSP implicit objects

Method Description

Forward(path) Forwards processing to another local URL
Include(path) Includes the output from processing another local

URL

Table 18 Request dispatch methods of the javax.servlet.jsp.PageContext class

 18

Two of other groups of methods supported by the pageContext object deal with attributes.
This implicit object is among those capable of storing attributes.

Method Description
setAttribute(key,value,scope) Associates an attribute value with a key in a specific

scope
getAttributeNamesInScope(scope) Retrieves the names of all attributes in a specific

scope
getAttribute(key,scope) Retrieves the attribute value associated with the key

in a specific scope
removeAttribute(key,scope) Removes the attribute value associated with the key

in a specific scope
findAttribute(name) Searches all scopes for the named attribute
getAttributeScope(name) Returns the scope in which the named attribute is

stored

Table 19 Methods of the javax.servlet.jsp.PageContext class

for accessing attributes across multiple scopes

Four different implicit objects are capable of storing attributes: the pageContext object,
the request object, the session object and the application object. As a result of this ability,
these objects are also referred to as scopes, because the longevity of an attribute value is a
direct result of the four objects in which it is stored. Page attributes, stored in the
pageContext object, only last as long as the processing of a single page. Request
attributes are also short-lived, but may be passed between pages as control is transferred.
Session attributes persist as long as the user continues interacting with the web server.
Application attributes are retained as long as the JSP container keeps one or more of an
application’s pages loaded in memory – conceivably, as long as the JSP container is
running.

In conjunction with the methods listed in Table 20 whose parameters include a scope
specification, the javax.servlet.jsp.PageContext class provides static variables for
representing these four different scopes. Behind the scenes, these are just symbolic names
for four arbitrary integer values. Since the actual values are hidden though, the symbolic
names are the standard means for indicating attribute scopes, as in the following page
fragment:

<%@page import=”javax.servlet.jsp.PageContext” %>
<% Enumeration stts=
pageContext.getAttributeNamesInScope(PageContext.SESSION_SCOPE);
while (atts.hasMoreElements()){ %>
Session Attribute: <%= atts.nextElement() %>

<% } %>

Variable Description
PAGE_SCOPE Scope for attributes stored in the pageContext object
REQUEST_SCOPE Scope for attributes stored in the request object
SESSION_SCOPE Scope for attributes stored in the session object

 19

APPLICATION_SCOPE Scope for attributes stored in the application object

Table 20 Class scope variables for the javax.servlet.jsp.PageContext class

7.1.4.4 Exception object

The ninth and final JSP implicit object is the exception object. Like the session object, the
exception object is not automatically available on every JSP page. Instead this object is
only available on pages that have been designated as error page using the isErrorPage
attribute of the page directive. On those JSP pages that are error pages, the exception
object will be an instance of the java.lang.Throwable class corresponding to the uncaught
error that caused control to be transferred to the error page. The methods of the
java.lang.Throwable class that are particularly useful in the context of JSP are
summarized in Table 21

Method Description
getMessage() Returns the descriptive error message associated

with the exception
printStackTrace(out) Prints the execution stack in effect when the

exception was thrown to the designated output
stream

toString() Returns a string combining the class name of the
exception with its error message

Table 21 Relevant methods of the java.lang.Throwable class

Here is an example page fragment demonstrating the use of exception object:

<%@ page isErrorPage=”true” %>
<H1>Warning!</H1>
The following error has been detected:

<%=exeption%>

<% exception.printStackTrace(out); %>

8 Session Tracking in JSP (Session Object)
• Cookies – a small text file stored on the client’s machine. Cookies can be

disabled in the browser settings so are not always available.
• URL rewriting – store session information in the URL. Works when cookies

are not supported but can make bookmaking of web pages a problem because
they have session specific information at the end of a URL.

• Hidden form fields – HTML hidden edit boxes such as <INPUT
TYPE=”HIDDEN” NAME=”USERNAME” VALUE=”..’”>. Every page has
to be dynamically produced with the values in the hidden field.

• Session objects – JSP Implicit object

A session object uses a key/value combination to store information. To retrieve
information from a session:

 20

Session.getValue(“counter”);

The return type of the method getValue is Object, so we need to typecast to get
the required value. If there is not a session key with that name, a null is returned.

To set a session key with a value,

Session.putValue(“counter”,totalCount)

<%-- JSP comment --%>

8.1 An example about JSP session:

<!-- session.jsp
checks to see if you have visited a page and keeps a counter. www.porasl.com
--->

<html>
<head>
</head>
<body>
<%
// get the value of the session variable - visitcounter
 Integer totalvisits = (Integer) session.getValue("visitcounter");

// if the session variable (visitcounter) is null
 if (totalvisits == null)
 {
 //set session variable to 0
 totalvisits = new Integer(0);
 session.putValue("visitcounter",totalvisits);

 // print a message to out visitor
 out.println("Welcome,visitor");
 }
 else
 {
 // if you have visited the page before then add 1 to the visitcounter
 totalvisits = new Integer(totalvisits.intValue()+1);
 session.putValue("visitcounter",totalvisits);
 out.println("You have visited this page "+ totalvisits + " time(s)!");
}
%>
</body>
</html>

 21

9 Flow of control
This ability of scriptlets to introduce statement blocks without closing them can be put to
good use in JSP pages to affect the flow of control through the various elements, static or
dynamic, that govern page output. In particular, such scriptlets can be used to implement
conditional or iterative content, or to add error handling to a sequence of operations.

9.1 Conditionalization
Java’s if statement with optional else if and else clauses, is used to control the execution
of code based on logical true/false tests.

<% if (x<0) {%>
<p>Sorry, can’t compute the factorial of a negative number.</p>
<%} else if (x>20){%>
<p>Sorry, arguments greater than 20 cause an overflow error.</p>
<%} else{%>
<p align=center><% =x%> !=<% =fact(x) %></p>
<%}%>

Three different blocks of statements are created by these scriptlets, only one of which
will actually be executed.

9.2 Iteration
Java has three different iteration constructs: the for loop, the while loop and the do/while
statement. They may all be used via scriplets to add iterative content to a JSP page, and
are particularly useful in the display of tabular data.

<table>
<tr><th><I>X</I></th><th><I>X</I> !</th></tr>
<% for (long x=01; x<=201; ++X){%>
<tr><td><% -x%></td><td><%=fact(x) %></td></tr>
<% }%>
</table>

Following is a short example of a JSP code illustrating above-mentioned iteration:

<html>
<head><title>
</title>
</head>
<body>
 <%! public long fact (long x) throws IllegalArgumentException{
 if((x<0) || (x>20))
 throw new IllegalArgumentException("Out of range.");
 else if(x==0) return 1;
 else return x*fact(x-1);
} %>

 22

<table border="1">
<tr><th><I>X</I></th><th><I>X</I> !</th></tr>
<% for (long x=1; x<=7; ++x){%>
<tr><td><%=x%></td><td><%=fact(x)%></td></tr>
<% }%>
</table>
</body>
</html>

Output of this JSP is following HTML file:

X X !
1 1
2 2
3 6
4 24
5 120
6 720
7 5040

Table 22 view of Generated HTML file

9.3 Exception handling

The default behavior when a exception is thrown while processing a JSP page is to
display an implementation specific error message in the browser window. If a block of
code on a JSP page has the potential of signaling an error, java’s exception handling
construct, the try block, maybe used in a set of scriptlets to catch the error locally and
respond to it gracefully within the current page. Consider following alternative
declaration for the factorial method presented earlier:

<%! Public long fact (long x) throws IllegalArgumentException{
 if((x<0) || (x>20))
 throw new IllegalArgumentException(“Out of range.”);
 else if(x==0) return 1;
 else return x*fact(x-1);
} %>

This version of the method verifies that the method’s argument is within the valid range
for this calculation, signaling an IllegalArgumentException if it is not. Using this version
of the method, we could consider an alternative implementation of the example presented
in the foregoing section on conditionals, as follows:

<%try {%>
<p align=center><%=x%> !=<%=fact(x)%></p>

 23

<%} catch(IllegalArgumentException e){%>
<p> Sorry factorial argument is out of range.</p>
<%}%>

9.4 Comments
9.4.1 Content comments

Content comment’s syntax associated with the type of content being generated by the JSP
page. To write a comment that will be included in the output of a JSP page that is
generating web content, the following syntax is used:

 <!- -comment - ->

Since these comments are part of the output from the page, we can include dynamic
content in them. HTML and XML comments can include JSP expressions, and the output
generated by these expressions will appear as part of the comment in the page’s response.
For example:

<!- - Java longs are 64 bits, so 20! =<%=fact(20)%> is the upper limit - ->

In this case, the computed value of the factorial expression will appear in the comment
that is actually sent to the browser.

9.4.2 JSP comments
JSP comments are independent of the type of content being produced by the page. They
are also independent of the scripting language used by the page. These comments can
only be viewed by examining the original JSP file and take the following form:

<%-- comment --%>

The body of this comment is ignored by the JSP container. When the page is compiled
into a servlet anything appearing between these two delimiters is skipped while
translating the page into servlet source code.

In the following page fragment only the first and last expressions displaying the factorials
of 2 and 6, will appear in the page output:

2! =<%= fact(2)%>

<%--
3! =<%= fact(3)%>

4! =<%= fact(4)%>

5! =<%= fact(5)%>

-- >
6! =<%= fact(6)%>

All of the other expressions have been commented out and will not appear in the page’s
output.

 24

9.4.3 Scripting language comments

Comments may also be introduced into a JSP page within scriptlets using the native
comment syntax of scripting language. For example java uses /* and */ as comment
delimiters. With java as the JSP scripting language, then scripting language comments
take the following form:

<% /* Script language comments */%>

Like JSP comments scripting language comments will not appear in the page’s output.

9.4.4 Example for Comments in JSP
When we run following JSP code:

<html>
<head><title>
</title>
</head>
<body>
 <%! public long fact (long x) throws IllegalArgumentException{
 if((x<0) || (x>20))
 throw new IllegalArgumentException("Out of range.");
 else if(x==0) return 1;
 else return x*fact(x-1);
} %>

<!-- 1. Content comments will be sent to client-->

 2!=<%=fact(2)%>

<%-- 2. JSP comment will be ignored by servlet engine ONLY 2! and 6! will be
displayed in generated HTML file.
3!=<%=fact(3)%>

 4!=<%=fact(4)%>

 5!=<%=fact(5)%>

--%>
 6!=<%=fact(6)%>

<% /* Script language comments */%>
</body>
</html>

Servlet engine generates following HTML code:

<html>
<head><title>
</title>

 25

</head>
<body>

<!-- 1. Content comments will be sent to client-->

 2!=2

 6!=720

</body>
</html>

In above generated HTML code comments number 2 and 3, i.e. “JSP comments” and
“script language comments” are removed by servlet compiler.

10 Actions
Actions are the fourth and final major category of JSP tags and themselves serve three
major roles:

• JSP actions allow for the transfer of control between pages.

• Actions support the specification of Java applets in a browser-independent

manner

• Action enable JSP pages to interact with JavaBeans component objects residing
on the server

All custom tags defined via tag libraries take the from of JSP action.

10.1 Forward

The <jsp:forward> action is used to permanently transfer control from a JSP page to
another location in the local server. Any content generated by the current page is
discarded, and processing of the request begins a new at the alternate location. The basic
syntax for this JSP action is as follows:

<jsp:forward page=”localURL” />

The page attribute of the <jsp:forward> action is used to specify this alternate location to
which control should be transferred, which may be a static document, a CGI, a servlet or
another JSP page. Note that the browser from, which the request was submitted isn’t
notified when the request is transferred to this alternate URL. In particular, the location
field at the top of the browser window will continue to display the URL that was
originally requested.

For added flexibility, the <jsp:forward> action supports the use of request-time attribute
values for page attribute. Specifically this means that a JSP expression can be used to
specify the value of the page attributes, as in the following example:

<jsp:forward page=’<%= “message” + statusCode+”.html” %>’ />

 26

Every time the page is processed for a request and the <jsp:forward action is to be taken,
this expression will be evaluated by the JSP container, and the resulting value will be
interpreted as the URL to which the request should be forwarded.

As mentioned above <jsp:forward> action can be used to transfer control to any other
document on the local serevr. For the specific case when control is transferred to another
JSP page the JSP container will automatically assign a new pageContext object to the
forwarded page. The request object and the session object will be the same for both the
original page and the forwarded page. Sharing application object depends upon whether
or not the two pages are both part of the same application. As a result some, but not all, of
attribute values accessible from the original page will be accessible on the forwarded
page, depending upon their scope: page attributes are not shared.

 If you need to transfer data as well as control from one page to another, the typical
approach is to store this data either in the request or in the session, depending upon how
much longer the data will be needed. All of the objects in which JSP pages can store
attributes are also accessible via the servlet API. As a result, this approach can also be
used to transfer data when forwarding from JSP page to a servlet.

Since the request object is common to both the original page and the forwarded page,
any request parameters that were available on the original page will also be accessible
from the forwarded page. It is also possible to specify additional request parameters to
be sent to the forwarded page through use of the <jsp:param> tag within the body of the
<jsp:forward> action.

10.1.1 Example - Jsp:forward
Sending additional parameters to forwarded page:

<jsp:forward page=”localURL”>
 <jsp:param name=”paramName1” value=”paramValue1”>
 …..
 <jsp:param name=”paramName1” value=”paramValue1”>
</jsp:forward>

Forwarding a page:

<% if(! Database.isAvailable()) { %>
 <% Notify the user about routine maintenance. %>
 <jsp:forward page=”db-maintenance.html” />
<% } %>
<% - - Database is up and running …. - -%>

10.2 Include
The <jsp:include> action enables page authors to incorporate the content generated by
another local document into the output of the current page. The output from the included

 27

Document is inserted into the original page’s output in place of the <jsp:include> tag,
then, this action is used to temporarily transfer control from a JSP page to another
location on the local server.

 <jsp:include page=”localURL” flush=”true” />
The page attribute of the <jsp:include> action is used to identify the document whose
output is to be inserted into the current page, and is specified as a URL on the local
server. The included page can be a static document, a CGI a servlet, or another JSP page.
As with the <jsp:forward> action, the page attribute of the <jsp:include> action supports
request-time attribute values (i.e., specifying is value via a JSP exprestion).

The flush attribute of the <jsp:include> action controls whether or not the output buffer
for the current page is flushed prior to including the content from the included page. It is
required that the flush attribute be set to true, indicating that the buffer is flushed before
processing of the included page begins.

Another element of functionality that the <jsp:include> action has in common with the
<jsp:forward> action is the ability to specify additional request parameters for the
included document. Again, this is accomplished via use of the <jsp:param> tag within the
body of the <jsp:include> action, as follows:

<jsp:include page=”localURL” flush=”true”>
 <jsp:include name=”paramName1” value=”paramValue1” />
<jsp:include name=”paramName2” value=”paramValue2” />
</jsp:include>

As indicated in figure the <jsp:include> action works by passing its request on the
included page, which is then handled by the JSP container as it would be handled any
other request. The output from the included page is then folded into the output of the
original page, which resumes processing. This incorporation of content takes place at the
time the request is handled. In addition, because the JSP container automatically
generates and compiles new servlets for JSP pages that have charged, if the text in a JSP
file included via the <jsp:include> action is changed, the changes will automatically be
reflected in the output of the including file. When the request is directed from the original
file to the included JSP page, the standard JSP mechanisms – that is, translation into a
stand-alone servlet, with automatic recompilation of changed files – are employed to
process the included page.

Figure 1 <jsp:include> action on the processing of a request

 28

The JSP include directive doesn’t automatically update the including page when the
included file is modified. This is because the include directive takes effect when the
including page istranslated into a servlet, effectively merging the base contents of the
included page into those of the original. The <jsp:include> action takes effect when
processing requests, and merges the output from the included page rather than its original
text.

10.3 Plug-in
The <jsp:plugin> action is used to generate browser-specific HTML for specifying Java
applets which reply on Sun Microsystem’s java plug-in.

10.4 Bean tags
JSP provides three different actions for interacting ith server-side JavaBeans:
<jsp:UseBean>, <jsp:setProperty> and <jsp:getProperty>. Because component-centric
design provides key strengths with respect to separation of presentation and application
logic. Interaction between JSP and JavaBean is described in this document.

